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High-quality automatic target recognition algorithms implemented
using a real-beam radar require imagery with resolved target
characteristics. This report presents an iterative motion parameter
estimation algorithm that improves the quality of high-resolution
two-dimensional inverse synthetic aperture radar (ISAR) images. The
algorithm uses the derivative of the phase history of isolated point
scatterers to estimate the initial conditions for the target motion
parameters of a maneuvering vehicle. The algorithm was tested using
simulated data. We report on the agreement between the actual and
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estimated values of range and entropy.
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Introduction
Real-beam radars have been used for many years to detect and track
moving targets, but their role in automatic target recognition (ATR) has
been limited. Typically, the input to ATR algorithms from real-beam radar
has been one-dimensional (1-D) high-range resolution profiles. 2-D high-
resolution imagery can be obtained from real-beam radar data, but it
requires intensive signal processing. Such imagery has the potential to
improve ATR algorithm performance in existing systems such as
Longbow, Patriot, and other military surveillance radars.

Synthetic aperture radar (SAR) techniques have been extensively studied
and many systems have been successfully implemented that generate
high-resolution 2-D imagery. The synthetic aperture is typically generated
by a side-looking radar within an airplane that is flying in a straight
trajectory. The basic scenario describing noncooperative inverse synthetic
aperture radar (ISAR) consists of a stationary radar that illuminates a
moving target. The radar could be tracking the target or pointed at a fixed
location with a target driving through the radar beam. In either case, the
processing techniques are very similar. In general, a high ratio of
crossrange to downrange motion is desirable.

ISAR images generated with a radar operating at millimeter-wave
(MMW) frequencies have advantages and disadvantages over images
generated with longer wavelengths. The image resolution in the
crossrange direction is proportional to frequency, so higher resolution
images can be generated with a higher frequency radar. At higher fre-
quencies, a larger frequency bandwidth is usually available, so higher
downrange resolution can also be achieved. The major disadvantages of
operating at higher frequencies are increased cost and reduced power.
Also, high-frequency radar returns are more sensitive to small changes in
the aspect angle of the target. This suggests that images can only be
coherently processed over small aspect angles. The algorithm developed
in this report uses range-Doppler processing techniques, which also are
limited by small angle requirements [1,2].

A major problem associated with imaging a maneuvering vehicle with a
real-beam radar is motion compensation. For spotlight mode processing,
the phase of the radar signal is compensated to stabilize the center of the
scene for SAR and the center of rotation of the target for ISAR. The stan-
dard criterion to generate a focused image is that the relative range to the
target can be estimated to within λ/16, where λ is the transmitted wave-
length of the radar, which is a difficult criterion to meet at MMW frequen-
cies [3]. SAR algorithms often use the phase gradient autofocus (PGA)
technique to improve image quality [4,5]. We used this technique to
estimate the derivative of the phase histories of isolated scatterers. Other
factors that complicate estimating the motion of the target are the nonuni-
form target rotation rate, clutter, multipath, and countermeasures. In this
report, we describe an algorithm that automatically improves image
quality by iteratively estimating the initial condition of four motion
parameters.
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Simulation
An iterative motion-parameter estimation (IMPE) algorithm was devel-
oped and tested on simulated radar data. The major components of the
simulation were the target backscatter, target motion, and the radar. The
target backscatter was simulated using an N-point, isotropic scatterer
model. The simulated radar was modeled after an existing U.S. Army
Research Laboratory (ARL) instrumentation radar [6,7]. A simplified
target motion model was developed to simulate the 2-D motion of a
maneuvering vehicle. Knowledge of the motion model was also used in
the IMPE algorithm. Noise was simulated by adding independent and
identically distributed (iid) Gaussian random variables to the radar in-
phase and quadrature (I&Q) data.

The radar model was configured to match several characteristics of an
existing ARL instrumentation radar. The radar is frequency-stepped,
pulsed, and coherent. The frequency range of the existing and simulated
radar is 33.2 to 34.8 GHz with 256 equally spaced frequency steps. The
simulated pulse repetition frequency (PRF) was 70 kHz, which is slower
than the maximum PRF of the existing radar, but faster than the maxi-
mum speed of the current data acquisition system. We assumed that the
antenna pattern was uniform and that a ramp of data could be collected
simultaneously. Pulsewidth, polarization, duty cycle, and range ambigu-
ity were not modeled.

Radar backscatter was generated with two different target configurations.
The first configuration consisted of 5 scatterers positioned at equal inter-
vals around the circumference of a circle with a radius of 2 m. Each
scatterer had a radar cross section (RCS) of 1 m2. The second configura-
tion consisted of 20 scatterers with random positions and RCS. Their
downrange and crossrange positions were randomly determined using a
1-D Gaussian distribution with a mean of 0 m and a standard deviation of
1.5 m. The RCS of the scatterers was randomly determined using a
Rayleigh distribution with a mean-square value of 1 m2.

Simulated radar data were generated by coherently summing the normal-
ized electric fields scattered from each scatterer on the target at discrete
times as shown in equations (1) through (3):

   E (t,m) = Σ
I

σ ie j2k(m)R i(t) , (1)

   
k(m) = 2π

λ =
2π f 0 + m∆f

c ,  and (2)

t = nT , (3)
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where E = normalized electric field at t = time for the mth frequency; k =
the propagation number, which is a function of m; I = the number of
scatterers on the target; σi = the RCS of the ith scatterer; Ri = the range of
the ith scatterer to the radar; f0 = the carrier frequency of the radar;
m = the number of frequency steps; ∆f = the frequency step size; c = the
speed of light; n = the radar ramp number; and T = the time to transmit a
ramp of data, which is the reciprocal of the pulse PRF. The effect of range
on equation (1) was ignored, since the target will be in the far-field.

A simple 2-D motion model was developed to simulate the target trajec-
tory. The model assumes that the target is rigid and that it has constant
angular and translational acceleration as illustrated in figure 1. The radar
is positioned at the origin of the x, y coordinate system, and the center of
rotation of the target is positioned at the origin of the x1, y1 coordinate
system. The distance between these coordinate systems is denoted X0,
which corresponds to the initial range between the radar and the target.
The radar coordinate system is fixed, and the target coordinate system is
being translated and rotated as a function of time. The initial start time is
assumed to be zero, and the target does not move in the Z direction. The
velocity and acceleration denoted by V and A in figure 1 describe the
translational motion of the target in the x1 direction as a function of time.
The angular velocity and acceleration denoted by θ and α in figure 1
describe the rotational motion of the x1, y1 coordinate system.

The model describes the motion of a target using four parameters: veloc-
ity, acceleration, angular direction, and turning angle. The turning angle
in the model roughly corresponds to the angle of the front wheels of a
vehicle relative to its body. The equations of motion ignore effects such as
tire side slip. The radius of curvature is estimated from the turning angle
and the length between the axles of a vehicle using

   ρ ≈ L
2 tan ξ/2

, (4)

where ρ = the radius of curvature of the vehicle, ξ = the turning angle of
the wheel, and L = the length between the axles of the vehicle. The angu-
lar velocity and acceleration of the target can be determined from the
radius of curvature and from

   ω = V
ρ ,  and (5)

   α = A
ρ , (6)

where ω = angular velocity, α = angular acceleration, V = velocity, and A =
acceleration. The angle and velocity of the target coordinate system as a
function of time is described by

   θ(t) = θ + ωt + αt 2

2
, and (7)

V(t) = V + At . (8)
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The x and y components of the velocity were calculated using standard
trigonometry. The acceleration was calculated by differentiating the
velocity with respect to time. The results were then evaluated at t = 0, as
shown in equations (9) through (12)

Vx(0) = V cos(θ) , (9)

Vy(0) = V sin(θ) , (10)

   Ax(0) = d
dt

Vx(t) = –V sin(θ)ω + A cos (θ) , and (11)

   Ay(0) = d
dt

Vy(t) = V cos(θ)ω + A sin (θ) . (12)

The range from the radar to the center of rotation of the target as a func-
tion of time can be approximated by applying the Euclidean distance
formula to the x and y position of the target:

   

R 0(t) ≈ X0 + Vxt + Ax
t 2

2

2

+ Vyt + Ay
t 2

2

2

1
2

, (13)

where X0 is initial range from the radar to the target. Next, a first-order
Taylor series expansion is performed on equation (13). We assume that

  
X0 > > Vtf

+ A
tf

2

2
, where tf 

= final imaging time. Applying these ap-

proximations to equation (13) and keeping only the coefficients up to t2,
results in

   
R 0(t) ≈ X0 + V cos(θ)t + – V sin(θ)ω + A cos(θ) +

V 2sin2(θ)
X0

t 2

2
. (14)

Stationary target

X

Moving target

0

y

θ0 + ωt + αt2/

V + At

x1

y1

x

Figure 1. Radar and
target coordinate
systems.
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This equation will be used to estimate the effects of motion-parameter
errors on the range.

The target radar model consisted of N isotropic point scatterers that were
fixed on the target. The position of the ith scatterer on the target with
respect to the radar can be determined by adding the x and y components
of the distance between the radar and the center of rotation of the target
to the distance between the center of the target to the ith scatterer. This is
illustrated by equations (15) and (16):

Xi(t) = X0(t) + xi(t) , and (15)

Yi(t) = Y0(t) + yi(t) . (16)

The position of the ith scatterer can be described in the polar coordinate
system by

   x i(t) = ricos φ i(t) , (17)

   y i(t) = risin φ i(t) , and (18)

   φ i(t) = φ i + ωt + α t 2

2
, (19)

where ri = the distance from the center of rotation of the target to the ith
scatterer, φi = the initial angle of the ith scatterer in the x1, y1 coordinate
system, ω = angular velocity, and α = angular acceleration. The first and
second derivatives with respect to time were calculated for equations (17)
and (18), and evaluated at t = 0 as shown below:

   x i(0) = –risin φ i ω , (20)

   y i(0) = –ricos φ i ω , (21)

   x i(0) = –ricos φ i ω 2 – risin φ i α , and (22)

   y i(0) = –risin φ i ω 2 + ricos φ i α . (23)

The range to the ith scatterer can be approximated by calculating the
Euclidean distance of the components described by equations (15) and
(16) using

   

R i(t) ≈ X 0 + V xt + A x
t 2

2
+ x i + x it + x i

t 2

2

2

+ V yt + A y
t 2

2
+ y i + y it + y i

t 2

2

2

1
2

, (24)
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where the coefficients are described in equations (9) through (12), (17),
(18), and (20) through (23). The difference in range from to the ith
scatterer to the range of the center of rotation of the target can be com-
puted by subtracting equation (14) from (24) using

∆Ri(t) = Ri(t) – R0(t) . (25)

To produce a polynomial equation as a function of time, a Taylor series
expansion was performed on both terms in equation (25). The expansion
of R0(t) was previously calculated in equation (14), and a Taylor series
expansion of Ri(t) can be performed if it is assumed that

  
X0 > > Vtf

+ A
tf

2

2
+ ri + ritf + ri

tf
2

2
,  where tf 

is the final imaging time

and the higher order terms are small. The results are

   ∆R i(t) ≈ x i + x it + x i
t 2

2
+ 1

X0
y iVy + y iy i t + 1

X0
y iAy + 2y iVy + y i

2 + y iy i
t 2

2
. (26)

If the target motion parameters are incorrectly estimated, then additional
terms are required to describe the range to the center of rotation of the
target. The actual range to the center of rotation to the target can be
decomposed into an estimated range and a range-error term using

   R 0(t) = R 0(t) + εR 0(t)  , (27)

where   R 0(t) = estimate range and    εR 0(t)  = range error. The range error can
be estimated multiplying the motion-parameter errors for velocity, accel-
eration, turning angle, and angular direction by the partial derivatives of
R0(t) with respect to the target motion parameters:

   εR 0(t) = ∆V
∂R 0(t)

∂V
+ ∆A

∂R 0(t)

∂A
+ ∆ξ

∂R 0(t)
∂ξ

+ ∆θ
∂R 0(t)

∂θ
. (28)

The results of applying equation (28) to the estimate of R0(t) described in
equation (14) are

   εR 0(t) = ∆V cos(θ) – ∆θV sin(θ) t +

∆A cos(θ) – ∆θA sin(θ) – ∆V sin(θ)ω – ∆θV cos(θ)ω – ∆ωV sin(θ)

+ ∆V
2V sin2(θ)

X0
+ ∆θ 2V 2 sin(θ) cos(θ)

X0

t 2

2
.

(29)
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The estimated change in range for the ith scatterer with respect to the
center of rotation of the target can now be determined with the effects of
the individual motion-parameter errors included in the calculation. The
change in range of the ith scatterer after nonexact motion compensation is
described by

   ∆R i(t) = R i(t) – R 0(t) = R 0(t) + ∆R i – R 0(t) + εR 0(t) = ∆R i + εR 0(t) , (30)

where the last two terms are described by equations (26) and (29).

The phase history of a scatterer can be estimated using techniques such as
prominient point processing (PPP) and PGA algorithms [8]. The PGA
technique estimates the derivative of the phase history of individual
scatterers using

   
φ i(d ) = Imag

g i(d )g i
*(d )

g i(d ) 2
,

(31)

where gi (d) = the crossrange slice at the dth bin of the complex image
calculated using a 2-D discrete Fourier transform (DFT), dot = derivative,
star = complex conjugate, and Imag = imaginary [4]. Equation (30) can be
transformed to correspond with equation (31) by multiplying the two-
way range by the propagation number and taking the derivative with
respect to time as shown below:

   Ψ i(t) = 2k∆R i(t) . (32)

If the scatterer location and the motion-parameter errors are known, then
the phase derivative calculation described in equation (31) should be
approximately equal to the theoretical result described in equation (32).
The scatterer locations can be estimated if motion-parameter errors are
known. The next section will describe the algorithm in more detail.
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IMPE Algorithm
The IMPE algorithm presented in this report iteratively estimates the
initial conditions of four motion parameters. Figure 2 shows a block
diagram of the algorithm. The first half of the algorithm, shown on the
left side of the figure, describes how information on the phase history of
individual point scatterers was estimated. The second half of the algo-
rithm, shown on the right side of the figure, describes how the initial
conditions of the motion parameters were estimated. As the estimates of
the target motion parameters were improved, the motion compensation
correction and the image quality were also improved.

The derivatives of the phase history of individual point scatterers were
estimated using equation (31). This equation assumes that there are
isolated point scatterers on the target and that they are still recognizable
in the ISAR image after nonexact motion compensation. First, the radar
data were motion-compensated to stabilize the center of rotation of the
target using the best available estimate of the target motion. Next, an
image was formed using a 2-D DFT. If this is a “good” image, or if a
stopping condition has been met, the algorithm will end. (Currently, the
algorithm stops after 60 iterations.) Otherwise, the locations of the target
scattering centers were determined by convolving a 2-D Gaussian tem-
plate with the ISAR image, applying a weighting function, then selecting
the elements with the largest magnitude. A fixed-length, uniformly
weighted window function was used to extract crossrange data in the
ISAR image. The phase derivative was calculated for each scatterer and
was fit to a second-order polynomial.

Once the phase derivatives of the scatterers were found, the motion-
parameter estimation portion of the algorithm shown on the right side of
figure 2 was started. Third polynomials were fit to the results obtained
using equation (31), and the zero- and first-order polynomial coefficients
were equated to coefficients calculated using equation (32). The zero-
order coefficients were used to calculate the crossrange position of the
scatterers, and the agreement between the simulated and calculated first-
order coefficient was used to evaluate the motion parameters. First, four
motion parameters were selected from a 4-D hypercube that was dis-
cretely sampled at equal intervals. Next, the crossrange positions of the
scatterers in the ISAR image were calculated based on the zero-order
polynomial coefficients calculated from the phase derivative of each point
scatterer and on the selected motion parameters. The downrange position
of the scatterers on the target were calculated by assuming that the aver-
age downrange position of the scatterers in the image were located at the
center of the target. The agreement between the simulated and calculated
first-order coefficients were determined using

   
Xn = wi cin – siΣ

I
y inΣ

I
+ ε , (33)
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Get ISAR data

Motion correct ISAR
data using the best 
estimate of motion

Image ISAR data

Estimate the instantaneous
phase derivative for each
scatterer, then fit it to a
third-order polynomial

Locate prominient
point scatterers

Generate an ISAR
image using a 2-D DFT

No

Yes
Stop

Good
image?

Select target
motion error vector

Yes
Iterate?

No

Save the motion parameters
that have the best agreement

Calculate the agreement between
the calculated and the simulated
first-order polynomial coefficients

Calculate the first-order
polynomial coefficient associated
for each scatterer and
the selected motion error

Calculate the downrange and
crossrange position of each scatterer
from the zero-order polynomial

Figure 2. Block
diagram of the IMPE
algorithm.

where Xn 
= the agreement for the nth set of motion parameters, wi 

= the
magnitude from the scatterer selection routine for the ith scattering center,
cin 

= the calculated first-order coefficient of the phase derivative for the
ith scatterer and the nth set of motion parameters, si = the simulated first-
order coefficient of the phase derivative, I = the set of scatterers with the
smallest absolute difference between cin 

and si, yin 
= the crossrange posi-

tion, and ε = a small positive constant (0.5 m). In the first factor in equa-
tion (33), the absolute value of the agreement between the first-order
coefficients is calculated. In the second factor, the crossrange position of
the scatterers is averaged and added to an offset. This forces the average
crossrange position of the scatterers to be near the origin. This is justified
if the average scatterer position identified on the target is close to the
center of rotation of the target. The motion-parameter vectors with the
smallest value of X were saved. For runs using the target configuration
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with 5 fixed scatterers, the 5 most prominient scatterers were evaluated
and the motion-parameter vectors with the three smallest values of X
were averaged together to form a new estimate. For runs using the target
configuration with 20 random scatterers, the 8 most prominent scatterers
were evaluated and the 7 scatterers with the best agreement were used to
determined the smallest value of X. The 7 motion-parameters vectors
with the smallest values of X were then normalized by subtracting the
mean and dividing by the standard deviation. The 6 motion-parameter
vectors with the smallest Euclidian distance were averaged to form a new
motion-parameter estimate. The updated estimate of the motion param-
eters are calculated using

  p(n + 1) = p(n) + u p(n) – p (n) , (34)

where   p(n + 1)  = the new estimated motion-parameter vector,   p(n)  = the
previous estimated motion-parameter vector, p(n) = the motion-parameter
vector calculated for the nth iteration of the algorithm, and u = the step
size parameter equal to 0.1.

The search pattern used by the IMPE algorithm to locate the best motion-
parameter vectors was a brute-force method that requires N4 iterations.
Motion parameters were selected from a 4-D hypercube that was dis-
cretely sampled at equal intervals. The center of the hypercube was set to
the current estimate of the motion parameters, and it extended ±1.5 times
the error estimate in the motion parameters. The initial error estimate was
equal to the actual error estimate. For successive iterations, the search
space for each parameter was linearly reduced. For the last iteration, the
range of the search space was ±0.3 times the initial error. This part of the
algorithm was implemented with four loops. This is an inefficient search-
ing algorithm, but it reduced the problem of finding local minimums
rather than the global minimum. The number of motion-parameter error
vectors searched varied from approximately 29,000 to 200,000. More
searching was required when there was a less accurate estimate of the
motion parameters. Implementation of the IMPE algorithm would require
a more intelligent search procedure.

The computational complexity of the entire algorithm was evaluated
using the number of arithmetic operations as a criterion. The computa-
tional complexity is approximately equal to L(MN4O + FR log(F) +
RF log(R)), where L = the number of iterations, M = the number of scatter-
ers, N = the number of possible values for each motion parameter, O = the
number of operations required to calculate Xn 

(80 to 100), F = the number
of frequencies, and R = the number of ramps. This results in a total of
between 5 × 1010 to 8 × 1010 calculations per run. The algorithm took
between 3 to 5 hr per run using code written in Matlab, version 5.2.1, on a
Pentium II computer running at 333 MHz.

A standard set of motion-parameter values and errors was selected for
testing the algorithm. Realistic values were selected for the motion pa-
rameters that did not violate any of the assumptions required by the
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algorithm. The motion errors were selected using the following proce-
dure. First, the maximum error that the IMPE algorithm could correctly
compensate for was determined separately for each motion parameter.
Then the maximum error for each parameter was reduced by 40 percent
and combined to form a motion-parameter error vector. The initial esti-
mate of the range and motion parameters was determined from the sum
of the actual values plus the initial errors shown in table 1.

The initial range from the radar to the target was 1 km. The downrange
error was equal to the mean downrange position of the scatterers in the
ISAR image, since the center of rotation of the target was at the origin.
The distance between the axles in the target required by equation (4) was
set to 3.5 m and the exact value was used in the algorithm. The results of
applying equations (4) through (6) to the parameters selected in table 1 is
a radius of curvature of approximately 200 m, angular velocity of 0.05
rad/s, and angular acceleration of 0.005 rad/s2. The total collection time
is equal to the number of frequencies transmitted, multiplied by the
number of ramps collected, divided by the PRF of the simulated radar.
This results in a simulated collection time or final time tf, of approxi-
mately 0.94 s. The rotation angle, calculated using equation (7), is ap-
proximately 0.05 rad, which is much less than 1 rad. The total distance
traveled by the target is approximately 10 m, which is much less than the
range of 1 km. These calculations indicate that the approximations made
in developing the IMPE algorithm are valid. The downrange and
crossrange resolution of an ISAR image generated using the radar model
and the above target motion values are both approximately 0.1 m.

Motion parameters Parameter values Initial errors

Velocity (V) 10 m/s 0.15 m/s
Acceleration (A) 1 m/s2 0.3 m/s2

Angle of wheel 1° 0.41°
Angular direction 60° –0.26°

Table 1. Target motion
parameters and initial
errors.
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Results
The results are presented in two parts: a qualitative section where some
intuition can be developed and a quantitative section where two metrics
are evaluated. In the qualitative section, ISAR images and the motion
parameters are shown in detail for a single run. The images were gener-
ated using a 2-D DFT. In the quantitative section, the metrics normalized
range error and entropy are evaluated. These metrics were selected
because they are relatively simple to calculate, have physical significance,
and are related to image quality. When the simulated data were motion-
compensated with the exact motion parameter values, the value of both
metrics was zero and the image quality was high. The normalized range
error and normalized entropy statistics were evaluated for various levels
of noise. The range error was calculated by subtracting the estimated
range from the exact range at each radar sample time, then the standard
deviation was calculated as a function of time, or equivalently, ramp
number. The normalized range error was calculated by dividing the range
error by the average radar wavelength. The entropy was calculated using

Hk = –∑X∑Y g(x,y)log(g(x,y)) , (35)

where Hk 
= entropy at the kth iteration of the algorithm, g(x,y) = the

image of the motion-compensated radar data, and x and y are indices. The
entropy was normalized using

   H k
′ =

H k – H min
H 0 – H min

, (36)

where   H k′  = the normalized entropy, Hk 
= the entropy at the kth iteration

of the algorithm, Hmin = the entropy (minimum) with exact motion
compensation, and H0 

= entropy calculated with the initial motion com-
pensation. The range error and entropy were calculated after each itera-
tion of the algorithm. Perfect motion compensation resulted in zero range
error and zero normalized entropy.

Detailed results of the IMPE algorithm are presented for a target RCS
model consisting of 20 random scatterers with independent Gaussian
noise with a mean of 0 m and variance of 5 m2. Figure 3 shows range-
Doppler images of the target at various stages in the algorithm. Figure
3(a) shows the initial ISAR image with motion compensation that in-
cluded the errors shown in table 1. Figure 3(i) shows the exact motion
compensation. The remaining ISAR images had motion compensation
performed using estimates from the IMPE algorithm at various iteration
points. These results qualitatively show the improvement in image
quality.
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Figure 3. Range-
Doppler images of 20
random scatterers
with Gaussian noise:
(a) Initial ISAR image,
(b) after 6 iterations,
and (c) after 11
iterations.
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Figure 3 (cont’d).
Range-Doppler
images of 20 random
scatterers with
Gaussian noise:
(d) after 16 iterations,
(e) after 21 iterations,
and (f) after 26
iterations.
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Figure 3 (cont’d).
Range-Doppler
images of 20 random
scatterers with
Gaussian noise:
(g) after 31 iterations,
(h) after 61 iterations,
and (i) with exact
correction.
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It is also informative to examine the estimates of the motion parameters
as a function of iteration number. Sometimes, the motion parameters
converged to their correct values, but most of the time they did not.
Certain combinations of values produced very good range estimates,
even though they did not correspond to the actual motion parameters.

For example, a high estimate in velocity could be partially offset by a low
estimate in acceleration in the range calculation. Figure 4 shows the
normalized error for the four motion parameters. The initial errors shown
in table 1 were normalized to a value of 1. Figures 5 and 6 show the
normalized range error and the entropy versus algorithm iteration num-
ber. These graphs qualitatively indicate that range error and entropy are a
better measure of image quality than error in the motion parameters. The
motion-parameter errors were often large and had a large variance over
several trials.

The algorithm performance was quantitatively analyzed using the nor-
malized range error and entropy, as shown in tables 2 and 3. Ten trials
were run for each target configuration and noise level. A visual analysis
was performed to eliminate trials where the minimum range error was
larger than the other trials. The number of trials eliminated is encapsu-
lated by parentheses in columns two and three of tables 2 and 3. The
mean and standard deviation were calculated for the remaining runs. For
the fixed target configuration with no noise added, the actual values were
reported rather than the statistics.
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Figure 4. Normalized
motion-parameter
errors for a single trial
run.
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Figure 6. Normalized
entropy for a single
run.
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Mean ± standard deviation (trials eliminated)
Noise variance

(m2) 5 scatterers 20 random scatterers

0 0.008 (0) 0.18 ± 0.10 (0)
5 0.048 ± 0.027 (1) 0.21 ± 0.10 (1)

20 0.056 ± 0.032 (2) 0.26 ± 0.16 (1)
40 0.087 ± 0.066 (2) 0.25 ± 0.11 (1)
80 0.133 ± 0.107 (2) 0.27 ± 0.11 (1)

160 0.256 ± 0.138 (0) 0.24 ± 0.12 (1)
320 0.249 ± 0.122 (0) 0.27 ± 0.10 (1)
640 0.232 ± 0.129 (0) 0.21 ± 0.11 (1)

1280 0.363 ± 0.212 (0) 0.23 ± 0.12 (1)

Table 2. Minimum
range error
normalized by
wavelength.

Mean ± standard deviation (trials eliminated)
Noise variance

(m2) 5 scatterers 20 random scatterers

0 0.0027 (0) 0.017 ± 0.05 (0)
5 0.027 ± 0.050 (1) 0.086 ± 0.12 (1)

20 0.051 ± 0.076 (2) 0.31 ± 0.38 (1)
40 0.085 ± 0.12 (2) 0.32 ± 0.40 (1)
80 0.23 ± 0.26 (2) 0.38 ± 0.41 (1)

160 0.52 ± 0.38 (0) 0.34 ± 0.34 (1)
320 0.57 ± 0.38 (0) 0.46 ± 0.41 (1)
640 0.38 ± 0.40 (0) 0.50 ± 0.36 (1)

1280 0.51 ± 0.49 (0) 0.14 ± 0.34 (1)

Table 3. Minimum
normalized entropy.

The results are reported for different noise levels, but they can also be
expressed as signal-to-noise (SNR) ratios. The expected values of the RCS
of the two target configurations are 5 and 20 m2. The expected values of
the RCS of the noise are 0, 5, 20, 40, 80, 160, 320, and 640 m2. This results
in SNRs of infinite, 0, −6, −9, −12, −15, −18, and −21 dB for the 5 fixed
scatterer configuration and infinite, 6, 0, −3, −6, −9, −12, and −15 dB for the
20 random scatterer configuration. Coherent processing gains obtained
using 256 frequencies and 256 ramps could potentially improve the SNR
by 48 dB. In the simulation, full coherent gains were not achieved. For
example, randomly placed scattering centers could interfere with each
other, which represented a noise to the algorithm. The initial range error
was approximately 2.5 wavelengths. The initial entropy varied depending
on the scatterer configuration and on the variance of the noise.

These results indicate that in approximately 80 percent of the runs with 5
fixed scatterers and approximately 90 percent of the runs with 20 random
scatterers, the algorithm was able to significantly improve range error
and entropy statistics. As the noise levels increased, the number of outli-
ers first increased, then began to decrease. This odd behavior was a result
of the threshold for outliers changing, rather than the performance of the
algorithm improving.
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The results in tables 2 and 3 indicate that the IMPE algorithm significantly
improved the evaluation metrics. Higher SNRs produced better metric
statistics and image quality. The algorithm also was able to improve
estimates of the motion parameters, but often improvements in the
metrics did not correspond with improvements in estimates of the motion
parameters. This is not a surprising result since four motion parameters
were being estimated with a sensor that estimated range. There are many
combinations of these motion parameters that could result in very similar
estimates of the range.

The range error was usually larger than λ/16, the standard criterion to
generate a focused image. The results in table 2 are reported in range
error divided by wavelength, so the normalized range error should be
less than 1/16 or 0.0625 for a focused image using the standard criterion.
This was only satisfied for the 5 scatterer target configuration with small
noise levels. However, there were significant visual improvements in
image quality even when this criterion was not satisfied.

In general, the metrics for the 5 fixed scatterer configuration were better
than those for the 20 random scatterer configuration. But the 5 fixed
scatterer configuration also had more trials eliminated. These results are
due to tradeoffs between having isolated scatterers and more scatterers.
More scatterers produce increased stability in the algorithm and isolated
scatterers produce better metrics and image quality.

Minimum range error and entropy statistics were examined to determine
if entropy could be used as a stopping condition for the IMPE algorithm.
Table 4 shows the mean and standard deviation for the range error at the
minimum entropy, and table 5 shows the mean and standard deviation of
the difference between the iteration number corresponding to the mini-
mum range error and the iteration number corresponding to minimum
entropy.

These results indicate that minimum normalized entropy and minimum
range error are not highly correlated. More sophisticated metrics are
required to determine when the algorithm should stop iterating.
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Mean ± standard deviation (trials eliminated)
Noise variance

(m2) 5 scatterers 20 random scatterers

0 0.010 0.81 ± 0.57
5 0.12 ± 0.13 0.86 ± 0.57

20 0.16 ± 0.22 0.80 ± 0.52
40 0.18 ± 0.21 0.66 ± 0.33
80 0.24 ± 0.22 0.98 ± 0.43

160 0.73 ± 0.78 0.98 ± 0.52
320 0.77 ± 0.80 1.09 ± 0.54
640 0.72 ± 0.65 0.95 ± 0.60

1280 1.8  ± 1.6 1.06 ± 0.76

Mean ± standard deviation (trials eliminated)
Noise variance

(m2) 5 scatterers 20 random scatterers

0 1 –21 ± 16
5 5.9 ± 12 –18 ± 19

20 5.9 ± 20 –21 ± 29
40 0.5 ± 19 –19 ± 22
80 –7.5 ± 23 –14 ± 30

160 –10 ± 25 –17 ± 25
320 -5.0 ± 27 –18 ± 26
640 –11 ± 18 –23 ± 17

1280 1.3 ± 22 –10 ± 32

Table 4. Range error at
minimum entropy.

Table 5. Difference in
iteration index
number of minimum
range error and
minimum entropy.
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Conclusions
An iterative motion-parameter estimation algorithm was developed for
noncooperative ISAR at MMW frequencies. The algorithm was tested
using simulated radar data with various levels of noise. The major com-
ponents of the simulation were the target backscatter model, the radar
model, and the target motion model. Two target RCS configurations were
tested: 5 point scatterers located at fixed locations and 20 scatterers
located at random locations. The significant parameters of the radar
model corresponded to an existing ARL instrumentation radar. A simple
2-D target motion model was developed and reasonable motion-
parameter values and errors were selected. Normalized range error and
the entropy metrics were used to evaluate the algorithm.

In approximately 80 percent of the runs with 5 fixed scatterers and ap-
proximately 90 percent of the runs with 20 random scatterers, the algo-
rithm was able to significantly improve the metrics and the visual image
quality. The image focus criterion that required range error of less than
λ/16 was only satisfied for the 5 scatterer target configuration with small
noise levels. However, there were significant visual improvements in
image quality when this criterion was not satisfied. The algorithm was
able to improve estimates of the motion parameters, but the updated
values usually did not converge to their actual values. Visual analysis
indicated that improvements in image quality often did not correspond
with improvements in estimates of the motion parameters. In general, the
5 scatterer target configuration had better image quality than the 20
random scatterer configuration, but it also had more trials eliminated.
Minimum entropy was tested as a stopping condition for the algorithm.
The results indicated that minimum entropy was not highly correlated
with the minimum range error. The metrics selected did not always
correspond with visual analysis. Thus, more sophisticated metrics based
on specific target recognition algorithm requirements are needed.

Overall, the results were positive enough to warrant further investigation.
The algorithm should be tested on real data in a benign environment. If
the algorithm performs well, the next step would be to develop a more
realistic simulation and to reduce the computation time. More sophisti-
cated target backscatter, motion, and noise and clutter models as well as
multipath effects are required. Additional sensors such as a monopulse
radar and/or infrared sensors should also be included in the simulation.
Also, a more efficient search pattern should be developed for locating
motion-parameter corrections.
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